Complexity and order in approximate quantum error-correcting codes (2024)

  • Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article ADS Google Scholar

  • Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article ADS MathSciNet Google Scholar

  • Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 2015, 163 (2015).

    Article MathSciNet Google Scholar

  • Leung, D. W., Nielsen, M. A., Chuang, I. L. & Yamamoto, Y. Approximate quantum error correction can lead to better codes. Phys. Rev. A 56, 2567–2573 (1997).

    Article ADS Google Scholar

  • Crépeau, C., Gottesman, D. & Smith, A. D. Approximate quantum error-correcting codes and secret sharing schemes. In Eurocrypt 285–301 (Springer, 2005).

  • Brandão, F. G. S. L., Crosson, E., Şahinoğlu, M. B. & Bowen, J. Quantum error correcting codes in eigenstates of translation-invariant spin chains. Phys. Rev. Lett. 123, 110502 (2019).

  • Hayden, P., Nezami, S., Popescu, S. & Salton, G. Error correction of quantum reference frame information. PRX Quantum 2, 010326 (2021).

  • Faist, P. et al. Continuous symmetries and approximate quantum error correction. Phys. Rev. X 10, 041018 (2020).

    Google Scholar

  • Woods, M. P. & Alhambra, Á. M. Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames. Quantum 4, 245 (2020).

    Article Google Scholar

  • Kubica, A. & Demkowicz-Dobrzański, R. Using quantum metrological bounds in quantum error correction: a simple proof of the approximate Eastin–Knill theorem. Phys. Rev. Lett. 126, 150503 (2021).

    Article ADS MathSciNet Google Scholar

  • Yang, Y., Mo, Y., Renes, J. M., Chiribella, G. & Woods, M. P. Optimal universal quantum error correction via bounded reference frames. Phys. Rev. Res. 4, 023107 (2022).

    Article Google Scholar

  • Zhou, S., Liu, Z.-W. & Jiang, L. New perspectives on covariant quantum error correction. Quantum 5, 521 (2021).

    Article Google Scholar

  • Liu, Z.-W. & Zhou, S. Approximate symmetries and quantum error correction. NPJ Quantum Inf. 9, 119 (2023).

    Article ADS Google Scholar

  • Kong, L. & Liu, Z.-W. Near-optimal covariant quantum error-correcting codes from random unitaries with symmetries. PRX Quantum 3, 020314 (2022).

    Article ADS Google Scholar

  • Wang, D.-S., Zhu, G., Okay, C. & Laflamme, R. Quasi-exact quantum computation. Phys. Rev. Res. 2, 033116 (2020).

    Article Google Scholar

  • Wang, D.-S., Wang, Y.-J., Cao, N., Zeng, B. & Laflamme, R. Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes. New J. Phys. 24, 023019 (2022).

    Article ADS MathSciNet Google Scholar

  • Bergamaschi, T., Golowich, L. & Gunn, S. Approaching the quantum singleton bound with approximate error correction. Preprint at https://doi.org/10.48550/arXiv.2212.09935 (2022).

  • Aaronson, S. The complexity of quantum states and transformations: from quantum money to black holes. Preprint at https://doi.org/10.48550/arXiv.1607.05256 (2016).

  • Wen, X.-G. Topological order: from long-range entangled quantum matter to an unification of light and electrons. ISRN Condens. Matter Phys. 2013, 198710 (2013).

    Article Google Scholar

  • Susskind, L. Computational complexity and black hole horizons. Fortschr. Phys. 64, 24–43 (2016).

    Article MathSciNet Google Scholar

  • Brown, A. R. & Susskind, L. Second law of quantum complexity. Phys. Rev. D 97, 086015 (2018).

    Article ADS MathSciNet Google Scholar

  • Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997).

    Article ADS MathSciNet Google Scholar

  • Bény, C. & Oreshkov, O. General conditions for approximate quantum error correction and near-optimal recovery channels. Phys. Rev. Lett. 104, 120501 (2010).

    Article ADS Google Scholar

  • Ng, H. K. & Mandayam, P. Simple approach to approximate quantum error correction based on the transpose channel. Phys. Rev. A 81, 062342 (2010).

    Article ADS Google Scholar

  • Schumacher, B. & Nielsen, M. A. Quantum data processing and error correction. Phys. Rev. A 54, 2629–2635 (1996).

    Article ADS MathSciNet Google Scholar

  • Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997).

    Article ADS MathSciNet Google Scholar

  • Schumacher, B. & Westmoreland, M. D. Approximate quantum error correction. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0112106 (2001).

  • Anshu, A. & Nirkhe, C. Circuit lower bounds for low-energy states of quantum code Hamiltonians. In Leibniz International Proceedings in Informatics (LIPIcs). Vol. 215, 6:1–6:22 (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022).

  • Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).

    Article ADS Google Scholar

  • Bravyi, S., Hastings, M. B. & Michalakis, S. Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010).

    Article ADS MathSciNet Google Scholar

  • Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order. Phys. Rev. B 82, 155138 (2010).

    Article ADS Google Scholar

  • Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article ADS MathSciNet Google Scholar

  • Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).

    Article ADS Google Scholar

  • Harlow, D. TASI lectures on the emergence of the bulk in AdS/CFT. Preprint at https://doi.org/10.48550/arXiv.1802.01040 (2018).

  • Maldacena, J. M. The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Article MathSciNet Google Scholar

  • Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).

    Article ADS MathSciNet Google Scholar

  • Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972).

    Article ADS MathSciNet Google Scholar

  • Kitaev, A. A simple model of quantum holography. https://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).

  • Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).

    Article ADS MathSciNet Google Scholar

  • Heemskerk, I., Penedones, J., Polchinski, J. & Sully, J. Holography from conformal field theory. Preprint at https://doi.org/10.1088/1126-6708/2009/10/079 (2009).

  • Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    Article MathSciNet Google Scholar

  • Witten, E. Three-dimensional gravity revisited. Preprint at https://doi.org/10.48550/arXiv.0706.3359 (2007).

  • Hellerman, S. A universal inequality for CFT and quantum gravity. J. High Energy Phys. 2011, 130 (2011).

    Article MathSciNet Google Scholar

  • Rattazzi, R., Rychkov, S. & Vichi, A. Central charge bounds in 4D conformal field theory. Phys. Rev. D 83, 046011 (2011).

    Article ADS Google Scholar

  • Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998).

    Article ADS MathSciNet Google Scholar

  • Liu, Z.-W. & Zhou, S. Quantum error correction meets continuous symmetries: fundamental trade-offs and case studies. Preprint at https://doi.org/10.48550/arXiv.2111.06360 (2023).

  • Harlow, D. & Ooguri, H. Symmetries in quantum field theory and quantum gravity. Commun. Math. Phys. 383, 1669–1804 (2021).

    Article ADS MathSciNet Google Scholar

  • Misner, C. W. & Wheeler, J. A. Classical physics as geometry. Ann. Phys. 2, 525–603 (1957).

    Article ADS Google Scholar

  • Banks, T. & Seiberg, N. Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011).

    Article ADS Google Scholar

  • Bohdanowicz, T. C., Crosson, E., Nirkhe, C. & Yuen, H. Good approximate quantum LDPC codes from spacetime circuit Hamiltonians. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 481–490 (ACM, 2019).

  • Knuth, D. E. Big omicron and big omega and big theta. SIGACT News 8, 18–24 (1976).

    Article Google Scholar

  • Hastings, M. B. & Wen, X.-G. Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005).

    Article ADS Google Scholar

  • Flammia, S. T., Haah, J., Kastoryano, M. J. & Kim, I. H. Limits on the storage of quantum information in a volume of space. Quantum 1, 4 (2017).

    Article Google Scholar

  • Kim, I. H. Long-range entanglement is necessary for a topological storage of quantum information. Phys. Rev. Lett. 111, 080503 (2013).

    Article ADS Google Scholar

  • Poulin, D. & Hastings, M. B. Markov entropy decomposition: a variational dual for quantum belief propagation. Phys. Rev. Lett. 106, 080403 (2011).

    Article ADS Google Scholar

  • Chen, X., Zeng, B., Gu, Z.-C., Chuang, I. L. & Wen, X.-G. Tensor product representation of a topological ordered phase: necessary symmetry conditions. Phys. Rev. B 82, 165119 (2010).

    Article ADS Google Scholar

  • Simmons-Duffin, D. TASI lectures on the conformal bootstrap. Preprint at https://doi.org/10.48550/arXiv.1602.07982 (2016).

  • Cardy, J. L. Conformal invariance and universality in finite-size scaling. J. Phys. A 17, L385 (1984).

    Article ADS MathSciNet Google Scholar

  • Cardy, J. L. Letter to the Editor—universal amplitudes in finite-size scaling: generalisation to arbitrary dimensionality. Curr. Phys. Sources Comments 2, 370–373 (1988).

  • Cardy, J. L. Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186–204 (1986).

    Article ADS MathSciNet Google Scholar

  • Blöte, H. W. J., Cardy, J. L. & Nightingale, M. P. Conformal invariance, the central charge and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986).

    Article ADS Google Scholar

  • Zou, Y., Milsted, A. & Vidal, G. Conformal fields and operator product expansion in critical quantum spin chains. Phys. Rev. Lett. 124, 040604 (2020).

    Article ADS MathSciNet Google Scholar

  • Hu, L., He, Y.-C. & Zhu, W. Operator product expansion coefficients of the 3D Ising criticality via quantum fuzzy spheres. Phys. Rev. Lett. 131, 031601 (2023).

    Article ADS MathSciNet Google Scholar

  • Complexity and order in approximate quantum error-correcting codes (2024)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Prof. An Powlowski

    Last Updated:

    Views: 5353

    Rating: 4.3 / 5 (64 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Prof. An Powlowski

    Birthday: 1992-09-29

    Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

    Phone: +26417467956738

    Job: District Marketing Strategist

    Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

    Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.