Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energy Phys. 2015, 163 (2015).
Leung, D. W., Nielsen, M. A., Chuang, I. L. & Yamamoto, Y. Approximate quantum error correction can lead to better codes. Phys. Rev. A 56, 2567–2573 (1997).
Crépeau, C., Gottesman, D. & Smith, A. D. Approximate quantum error-correcting codes and secret sharing schemes. In Eurocrypt 285–301 (Springer, 2005).
Brandão, F. G. S. L., Crosson, E., Şahinoğlu, M. B. & Bowen, J. Quantum error correcting codes in eigenstates of translation-invariant spin chains. Phys. Rev. Lett. 123, 110502 (2019).
Hayden, P., Nezami, S., Popescu, S. & Salton, G. Error correction of quantum reference frame information. PRX Quantum 2, 010326 (2021).
Faist, P. et al. Continuous symmetries and approximate quantum error correction. Phys. Rev. X 10, 041018 (2020).
Woods, M. P. & Alhambra, Á. M. Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames. Quantum 4, 245 (2020).
Kubica, A. & Demkowicz-Dobrzański, R. Using quantum metrological bounds in quantum error correction: a simple proof of the approximate Eastin–Knill theorem. Phys. Rev. Lett. 126, 150503 (2021).
Yang, Y., Mo, Y., Renes, J. M., Chiribella, G. & Woods, M. P. Optimal universal quantum error correction via bounded reference frames. Phys. Rev. Res. 4, 023107 (2022).
Zhou, S., Liu, Z.-W. & Jiang, L. New perspectives on covariant quantum error correction. Quantum 5, 521 (2021).
Liu, Z.-W. & Zhou, S. Approximate symmetries and quantum error correction. NPJ Quantum Inf. 9, 119 (2023).
Kong, L. & Liu, Z.-W. Near-optimal covariant quantum error-correcting codes from random unitaries with symmetries. PRX Quantum 3, 020314 (2022).
Wang, D.-S., Zhu, G., Okay, C. & Laflamme, R. Quasi-exact quantum computation. Phys. Rev. Res. 2, 033116 (2020).
Wang, D.-S., Wang, Y.-J., Cao, N., Zeng, B. & Laflamme, R. Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes. New J. Phys. 24, 023019 (2022).
Bergamaschi, T., Golowich, L. & Gunn, S. Approaching the quantum singleton bound with approximate error correction. Preprint at https://doi.org/10.48550/arXiv.2212.09935 (2022).
Aaronson, S. The complexity of quantum states and transformations: from quantum money to black holes. Preprint at https://doi.org/10.48550/arXiv.1607.05256 (2016).
Wen, X.-G. Topological order: from long-range entangled quantum matter to an unification of light and electrons. ISRN Condens. Matter Phys. 2013, 198710 (2013).
Susskind, L. Computational complexity and black hole horizons. Fortschr. Phys. 64, 24–43 (2016).
Brown, A. R. & Susskind, L. Second law of quantum complexity. Phys. Rev. D 97, 086015 (2018).
Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997).
Bény, C. & Oreshkov, O. General conditions for approximate quantum error correction and near-optimal recovery channels. Phys. Rev. Lett. 104, 120501 (2010).
Ng, H. K. & Mandayam, P. Simple approach to approximate quantum error correction based on the transpose channel. Phys. Rev. A 81, 062342 (2010).
Schumacher, B. & Nielsen, M. A. Quantum data processing and error correction. Phys. Rev. A 54, 2629–2635 (1996).
Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997).
Schumacher, B. & Westmoreland, M. D. Approximate quantum error correction. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0112106 (2001).
Anshu, A. & Nirkhe, C. Circuit lower bounds for low-energy states of quantum code Hamiltonians. In Leibniz International Proceedings in Informatics (LIPIcs). Vol. 215, 6:1–6:22 (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022).
Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).
Bravyi, S., Hastings, M. B. & Michalakis, S. Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010).
Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order. Phys. Rev. B 82, 155138 (2010).
Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).
Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).
Harlow, D. TASI lectures on the emergence of the bulk in AdS/CFT. Preprint at https://doi.org/10.48550/arXiv.1802.01040 (2018).
Maldacena, J. M. The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).
Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).
Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972).
Kitaev, A. A simple model of quantum holography. https://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015).
Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).
Heemskerk, I., Penedones, J., Polchinski, J. & Sully, J. Holography from conformal field theory. Preprint at https://doi.org/10.1088/1126-6708/2009/10/079 (2009).
Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).
Witten, E. Three-dimensional gravity revisited. Preprint at https://doi.org/10.48550/arXiv.0706.3359 (2007).
Hellerman, S. A universal inequality for CFT and quantum gravity. J. High Energy Phys. 2011, 130 (2011).
Rattazzi, R., Rychkov, S. & Vichi, A. Central charge bounds in 4D conformal field theory. Phys. Rev. D 83, 046011 (2011).
Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998).
Liu, Z.-W. & Zhou, S. Quantum error correction meets continuous symmetries: fundamental trade-offs and case studies. Preprint at https://doi.org/10.48550/arXiv.2111.06360 (2023).
Harlow, D. & Ooguri, H. Symmetries in quantum field theory and quantum gravity. Commun. Math. Phys. 383, 1669–1804 (2021).
Misner, C. W. & Wheeler, J. A. Classical physics as geometry. Ann. Phys. 2, 525–603 (1957).
Banks, T. & Seiberg, N. Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011).
Bohdanowicz, T. C., Crosson, E., Nirkhe, C. & Yuen, H. Good approximate quantum LDPC codes from spacetime circuit Hamiltonians. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 481–490 (ACM, 2019).
Knuth, D. E. Big omicron and big omega and big theta. SIGACT News 8, 18–24 (1976).
Hastings, M. B. & Wen, X.-G. Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005).
Flammia, S. T., Haah, J., Kastoryano, M. J. & Kim, I. H. Limits on the storage of quantum information in a volume of space. Quantum 1, 4 (2017).
Kim, I. H. Long-range entanglement is necessary for a topological storage of quantum information. Phys. Rev. Lett. 111, 080503 (2013).
Poulin, D. & Hastings, M. B. Markov entropy decomposition: a variational dual for quantum belief propagation. Phys. Rev. Lett. 106, 080403 (2011).
Chen, X., Zeng, B., Gu, Z.-C., Chuang, I. L. & Wen, X.-G. Tensor product representation of a topological ordered phase: necessary symmetry conditions. Phys. Rev. B 82, 165119 (2010).
Simmons-Duffin, D. TASI lectures on the conformal bootstrap. Preprint at https://doi.org/10.48550/arXiv.1602.07982 (2016).
Cardy, J. L. Conformal invariance and universality in finite-size scaling. J. Phys. A 17, L385 (1984).
Cardy, J. L. Letter to the Editor—universal amplitudes in finite-size scaling: generalisation to arbitrary dimensionality. Curr. Phys. Sources Comments 2, 370–373 (1988).
Cardy, J. L. Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186–204 (1986).
Blöte, H. W. J., Cardy, J. L. & Nightingale, M. P. Conformal invariance, the central charge and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986).
Zou, Y., Milsted, A. & Vidal, G. Conformal fields and operator product expansion in critical quantum spin chains. Phys. Rev. Lett. 124, 040604 (2020).
Hu, L., He, Y.-C. & Zhu, W. Operator product expansion coefficients of the 3D Ising criticality via quantum fuzzy spheres. Phys. Rev. Lett. 131, 031601 (2023).